Limit search to items available for checkout
103 results found. Sorted by relevance | date | title .
E-BOOK
Title Properties And Applications Of Complex Intermetallics.
Imprint World Scientific 2009.

Copies/Volumes

LOCATION CALL # STATUS
 Internet  Electronic Book    AVAILABLE
Description 1 online resource (460)
Note Available only to authorized UTEP users.
Subject Alloys -- Congresses.
Intermetallic compounds -- Congresses.
Physical metallurgy -- Congresses.
Genre Conference papers and proceedings.
Contents Cover13; -- CONTENTS -- Foreword -- Chapter 1: Metallic, Complex and So Different Jean-Marie Dubois -- 1. Introduction -- 2. Historical Background -- 3. Complexity in Real and Reciprocal Space -- 3.1. The example of compounds of Al, Mg and Zn -- 3.2. Hierarchy, groups of atoms and clusters -- 3.3. The key role played by disorder and defectsb -- 3.4. Definition of a CMA in reciprocal space -- 4. Metallurgy and Surface Chemistry of CMAs -- 4.1. Preparation methods -- 4.2. Corrosion, oxidation and interaction with chemical atmosphere -- 4.3. Atom transport -- 4.4. Essential mechanical properties -- 4.5. Metadislocations -- 5. Phase Selection -- 5.1. Hume-Rothery rules -- 5.2. More on specific Al-TM CMAs -- 5.3. The case of g-brass type CMAs -- 5.4. The case of Al-Mg( -Zn) alloys -- 6. Properties of Al-Transition Metal(s) CMAs -- 6.1. The essential property of Al-TM CMAs -- 6.2. Transport properties -- 6.3. Solid-solid contact -- 6.4. Wetting against liquid metals -- 6.5. Wetting against polar liquids -- 7. Inverse Nano-Structuration -- 8. Conclusion -- Acknowledgments -- References -- Chapter 2: Solution Growth of Intermetallic Single Crystals -- 1. Introduction -- 2. What Do You Need? -- 3. Planning the Growth -- 4. Assembling the Growth -- 5. Running the Growth -- 6. Decanting -- 7. Opening the Growth and Planning the Next One -- 8. Final Remarks -- Acknowledgments -- References -- Chapter 3: Thermal Conductivity of Complex Metallic Alloys13;10;Ana Smontara, Ante Bilu353;i263;, 381;eljko Bihar and Igor Smiljani263; -- 1. Introduction -- 2. Basics of the Thermal Conductivity Measurements -- 2.1. Heat losses in thermal conductivity measurements -- 2.2. Example 8211; thermal conductivity of magnetite Fe3O4 -- 3. The Analysis of Experimental Thermal Conductivity Data -- 3.1. Thermal conductivity of metals and alloys -- 3.2. Thermal conductivity of complex metallic alloys -- 4. Conclusions -- Acknowledgments -- References -- Chapter 4: Thermoelectric Materials Silke Pashen -- 1. Introduction -- 2. Cage Compounds -- 2.1. Definitions -- 2.2. Examples -- 2.3. Characteristic properties of cage compounds -- 2.4. Tuning for optimized performance -- 3. Strongly Correlated Cage Compounds -- 3.1. The concept of strongly correlated cage compounds -- 3.2. Brief introduction to strongly correlated electron systems -- 3.3. Attempts to obtain strongly correlated cage compounds -- References -- Chapter 5: Magnetism of Complex Metallic Alloys -- 1. Some Aspects of the CEF Theory -- 1.1. Magnetic properties of free ions -- 1.2. The CEF Hamiltonian for Rare Earth elements -- 1.3. Symmetry considerations -- 1.4. Calculation of CEF splitting and 4f charge density -- 1.5. Ce3+ in cubic and hexagonal symmetries -- 1.6. Example: an Yb ion in a hexagonal CEF -- 2. Physical Properties and CEF Effects -- 2.1. Inelastic neutron scattering -- 2.2. The Schottky contribution to the speci c heat -- 2.3. Magnetic entropy -- 2.4. Magnetisation and magnetic susceptibility -- 2.5. Electrical resistivity -- 2.6. Thermal Expansion and Magnetostriction -- 3. Magnetic Behaviour of Complex Metallic Alloys: Skutterudite PrFe4Sb12 -- 4. Outlook -- Acknowledgment -- References -- A. Stevens Operators -- B. Tesseral Harmonics -- Chapter 6: Electronic Structure of Qua.
Summary Complex metal alloys (CMAs) comprise a huge group of largely unknown alloys and compounds, where many phases are formed with crystal structures based on giant unit cells containing atom clusters, ranging from tens of to more than thousand atoms per unit cell. In these phases, for many phenomena, the physical length scales are substantially smaller than the unit-cell dimension. Hence, these materials offer unique combinations of properties which are mutually exclusive in conventional materials, such as metallic electric conductivity combined with low thermal conductivity, good light absorption.