LEADER 00000cam  2200481M  4500 
001    729020048 
003    OCoLC 
005    20191122043556.2 
006    m     o  d         
007    cr un|---uuuuu 
008    101115s2009    xx      o     000 0 eng d 
020    1282757822 
020    9781282757820 
020    9789814261647 
020    9814261645 
035    (OCoLC)729020048|z(OCoLC)816581849 
035    Ebook Central Science & Technology Ebook Subscription 
035    skip4alma 
040    IDEBK|beng|epn|cIDEBK|dOCLCQ|dEBLCP|dOCLCQ|dDEBSZ|dOCLCQ
       |dZCU|dOCLCQ|dMERUC|dICG|dOCLCO|dOCLCF|dAU@|dOCLCQ|dDKC
       |dOCLCQ 
049    txum 
050  4 TN690eb 
072  7 TDM|2bicssc 
245 00 Properties And Applications Of Complex Intermetallics. 
260    |bWorld Scientific|c2009. 
300    1 online resource (460) 
336    text|btxt|2rdacontent 
337    computer|bc|2rdamedia 
338    online resource|bcr|2rdacarrier 
505 0  Cover13; -- CONTENTS -- Foreword -- Chapter 1: Metallic, 
       Complex and So Different Jean-Marie Dubois -- 1. 
       Introduction -- 2. Historical Background -- 3. Complexity 
       in Real and Reciprocal Space -- 3.1. The example of 
       compounds of Al, Mg and Zn -- 3.2. Hierarchy, groups of 
       atoms and clusters -- 3.3. The key role played by disorder
       and defectsb -- 3.4. Definition of a CMA in reciprocal 
       space -- 4. Metallurgy and Surface Chemistry of CMAs -- 
       4.1. Preparation methods -- 4.2. Corrosion, oxidation and 
       interaction with chemical atmosphere -- 4.3. Atom 
       transport -- 4.4. Essential mechanical properties -- 4.5. 
       Metadislocations -- 5. Phase Selection -- 5.1. Hume-
       Rothery rules -- 5.2. More on specific Al-TM CMAs -- 5.3. 
       The case of g-brass type CMAs -- 5.4. The case of Al-Mg( -
       Zn) alloys -- 6. Properties of Al-Transition Metal(s) CMAs
       -- 6.1. The essential property of Al-TM CMAs -- 6.2. 
       Transport properties -- 6.3. Solid-solid contact -- 6.4. 
       Wetting against liquid metals -- 6.5. Wetting against 
       polar liquids -- 7. Inverse Nano-Structuration -- 8. 
       Conclusion -- Acknowledgments -- References -- Chapter 2: 
       Solution Growth of Intermetallic Single Crystals -- 1. 
       Introduction -- 2. What Do You Need? -- 3. Planning the 
       Growth -- 4. Assembling the Growth -- 5. Running the 
       Growth -- 6. Decanting -- 7. Opening the Growth and 
       Planning the Next One -- 8. Final Remarks -- 
       Acknowledgments -- References -- Chapter 3: Thermal 
       Conductivity of Complex Metallic Alloys13;10;Ana Smontara,
       Ante Bilu353;i263;, 381;eljko Bihar and Igor Smiljani263; 
       -- 1. Introduction -- 2. Basics of the Thermal 
       Conductivity Measurements -- 2.1. Heat losses in thermal 
       conductivity measurements -- 2.2. Example 8211; thermal 
       conductivity of magnetite Fe3O4 -- 3. The Analysis of 
       Experimental Thermal Conductivity Data -- 3.1. Thermal 
       conductivity of metals and alloys -- 3.2. Thermal 
       conductivity of complex metallic alloys -- 4. Conclusions 
       -- Acknowledgments -- References -- Chapter 4: 
       Thermoelectric Materials Silke Pashen -- 1. Introduction -
       - 2. Cage Compounds -- 2.1. Definitions -- 2.2. Examples -
       - 2.3. Characteristic properties of cage compounds -- 2.4.
       Tuning for optimized performance -- 3. Strongly Correlated
       Cage Compounds -- 3.1. The concept of strongly correlated 
       cage compounds -- 3.2. Brief introduction to strongly 
       correlated electron systems -- 3.3. Attempts to obtain 
       strongly correlated cage compounds -- References -- 
       Chapter 5: Magnetism of Complex Metallic Alloys -- 1. Some
       Aspects of the CEF Theory -- 1.1. Magnetic properties of 
       free ions -- 1.2. The CEF Hamiltonian for Rare Earth 
       elements -- 1.3. Symmetry considerations -- 1.4. 
       Calculation of CEF splitting and 4f charge density -- 1.5.
       Ce3+ in cubic and hexagonal symmetries -- 1.6. Example: an
       Yb ion in a hexagonal CEF -- 2. Physical Properties and 
       CEF Effects -- 2.1. Inelastic neutron scattering -- 2.2. 
       The Schottky contribution to the speci c heat -- 2.3. 
       Magnetic entropy -- 2.4. Magnetisation and magnetic 
       susceptibility -- 2.5. Electrical resistivity -- 2.6. 
       Thermal Expansion and Magnetostriction -- 3. Magnetic 
       Behaviour of Complex Metallic Alloys: Skutterudite 
       PrFe4Sb12 -- 4. Outlook -- Acknowledgment -- References --
       A. Stevens Operators -- B. Tesseral Harmonics -- Chapter 6
       : Electronic Structure of Qua. 
506    Available only to authorized UTEP users. 
520    Complex metal alloys (CMAs) comprise a huge group of 
       largely unknown alloys and compounds, where many phases 
       are formed with crystal structures based on giant unit 
       cells containing atom clusters, ranging from tens of to 
       more than thousand atoms per unit cell. In these phases, 
       for many phenomena, the physical length scales are 
       substantially smaller than the unit-cell dimension. Hence,
       these materials offer unique combinations of properties 
       which are mutually exclusive in conventional materials, 
       such as metallic electric conductivity combined with low 
       thermal conductivity, good light absorption. 
650  0 Alloys|vCongresses. 
650  0 Intermetallic compounds|vCongresses. 
650  0 Physical metallurgy|vCongresses. 
655  7 Conference papers and proceedings.|2fast
       |0(OCoLC)fst01423772 
856 40 |uhttp://0-ebookcentral.proquest.com.lib.utep.edu/lib/utep
       /detail.action?docID=1679341|zTo access this resource 
LOCATION CALL # STATUS
 Internet  Electronic Book    AVAILABLE