LEADER 00000cam  2200745Mi 4500 
001    851970552 
003    OCoLC 
005    20210108112059.2 
006    m     o  d         
007    cr |n||||||||| 
008    130706s2013    gw      ob    001 0 eng d 
010    |z2012051182 
020    9783110269840 
020    3110269848 
020    3110269511 
020    9783110269512 
035    (OCoLC)851970552|z(OCoLC)857080856|z(OCoLC)960205224
       |z(OCoLC)961596211|z(OCoLC)962700733|z(OCoLC)988515665
       |z(OCoLC)992115282|z(OCoLC)1037703718|z(OCoLC)1038689361
       |z(OCoLC)1045474105|z(OCoLC)1055368168|z(OCoLC)1059021721
       |z(OCoLC)1065994911|z(OCoLC)1081265282|z(OCoLC)1153450762
       |z(OCoLC)1228527038 
035    Ebook Central Science & Technology Ebook Subscription 
035    skip4alma 
040    EBLCP|beng|epn|cEBLCP|dOCLCO|dOCLCQ|dIDEBK|dN$T|dCOO
       |dOCLCA|dDEBSZ|dOCLCO|dOCLCQ|dOCLCF|dDEBBG|dE7B|dCDX
       |dYDXCP|dOCLCO|dOCLCQ|dOCLCO|dOCLCQ|dOCLCO|dLOA|dOCLCO
       |dOCLCQ|dAGLDB|dMOR|dCCO|dPIFAG|dZCU|dMERUC|dOCLCQ|dDEGRU
       |dU3W|dSTF|dWRM|dVTS|dNRAMU|dICG|dINT|dVT2|dAU@|dOCLCQ
       |dWYU|dOCLCQ|dLEAUB|dDKC|dOCLCQ|dUKAHL|dOCLCQ|dUKCRE|dBRF
       |dAJS|dOCLCO 
049    txum 
050  4 QH352|b.L67 2013eb 
072  7 NAT|x010000|2bisacsh 
072  7 NAT|x045040|2bisacsh 
072  7 SCI|x026000|2bisacsh 
072  7 SCI|x020000|2bisacsh 
082 04 577.8/8|223eb 
100 1  Hou, Zhanyuan. 
245 10 Lotka-Volterra and Related Systems :|bRecent Developments 
       in Population Dynamics. 
260    Berlin :|bDe Gruyter,|c2013. 
300    1 online resource (244 pages) 
336    text|btxt|2rdacontent 
337    computer|bc|2rdamedia 
338    online resource|bcr|2rdacarrier 
490 1  De Gruyter Series in Mathematics and Life Sciences 
504    Includes bibliographical references and index. 
505 0  Preface; Permanence, global attraction and stability; 1 
       Introduction; 2 Existence of a compact uniform attractor; 
       3 Proof of Theorems 2.1, 2.2 and 2.3; 4 Partial permanence
       and permanence; 5 Necessary conditions for permanence of 
       Lotka-Volterra systems; 6 Sufficient condition for 
       permanence of Lotka-Volterra systems; 7 Further notes; 8 
       Global attraction and stability of Lotka-Volterra systems;
       9 Global stability by Lyapunov functions; 10 Global 
       stability by split Lyapunov functions; 10.1 Checking the 
       conditions (10.2) and (10.8); 10.2 Examples. 
505 8  11 Global stability of competitive Lotka-Volterra 
       systems12 Global attraction of competitive Lotka-Volterra 
       systems; 13 Some notes; Bibliography; Competitive Lotka-
       Volterra systems with periodic coefficients; 1 
       Introduction; 2 The autonomous model. The logistic 
       equation; 3 Two species periodic models; 4 Competitive 
       exclusion; 5 One species extinction in three-dimensional 
       models; 6 The impulsive logistic equation; 7 Two species 
       systems with impulsive effects. A look at the N-
       dimensional case; 8 The influence of impulsive 
       perturbations on extinction in three-species models; 
       Bibliography. 
505 8  Fixed points, periodic points and chaotic dynamics for 
       continuous maps with applications to population dynamics1 
       Introduction; 2 Notation; 3 Search of fixed points for 
       maps expansive along one direction; 4 The planar case; 4.1
       Stretching along the paths and variants; 4.2 The Crossing 
       Lemma; 5 The N-dimensional setting: Intersection Lemma; 
       5.1 Zero-sets of maps depending on parameters; 5.2 
       Stretching along the paths in the N-dimensional case; 6 
       Chaotic dynamics for continuous maps; 7 Definitions and 
       main results; 8 Symbolic dynamics; 9 On various notions of
       chaos; 10 Linked twist maps. 
505 8  11 Examples from the ODEs12 Predator-prey model; 12.1 The 
       effects of a periodic harvesting; 12.2 Technical details 
       and proofs; Bibliography; Index. 
506    Available only to authorized UTEP users. 
520    This book facilitates research in the general area of 
       population dynamics by presenting some of the recent 
       developments involving theories, methods and application 
       in this important area of research. The underlying common 
       feature of the studies included in the book is that they 
       are related, either directly or indirectly, to the well-
       known Lotka-Volterra systems which offer a variety of 
       mathematical concepts from both theoretical and 
       application points of view. 
588 0  Print version record. 
650  0 Lotka-Volterra equations. 
650  0 Population biology|xMathematical models. 
655  0 Electronic books. 
700 1  Lisena, Benedetta. 
700 1  Pireddu, Marina. 
700 1  Zanolin, Fabio. 
700 1  Ahmad, Shair. 
700 1  Stamova, Ivanka. 
776 08 |iPrint version:|aHou, Zhanyuan.|tLotka-Volterra and 
       Related Systems : Recent Developments in Population 
       Dynamics.|dBerlin : De Gruyter, ©2013|z9783110269512 
830  0 De Gruyter series in mathematics and life sciences. 
856 40 |uhttp://0-ebookcentral.proquest.com.lib.utep.edu/lib/utep
       /detail.action?docID=1121628|zTo access this resource 
LOCATION CALL # STATUS
 Internet  Electronic Book    AVAILABLE