Limit search to items available for checkout
Title Transport in semiconductor mesoscopic devices / David K. Ferry.
Imprint Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2015]


 Internet  Electronic Book    AVAILABLE
Description 1 online resource (various pagings) : illustrations (some color).
Series IOP expanding physics, 2053-2563.
IOP expanding physics.
Note "Version: 20150801"--Title page verso.
Bibliog. Includes bibliographical references.
Note Available only to authorized UTEP users.
Graduate students and researchers in semiconductor physics and devices.
Also available in print.
Mode of access: World Wide Web.
System requirements: Adobe Acrobat Reader.
Bio/Hist Note David K. Ferry is Regents' Professor in the School of Electrical, Computer, and Energy Engineering, at Arizona State University. He received his doctoral degree from the University of Texas, Austin, and was the recipient of the 1999 Cledo Brunetti Award from the Institute of Electrical and Electronics Engineers for his contributions to nanoelectronics. He is the author, or co-author, of numerous scientific articles and more than a dozen books.
Note Title from PDF title page (viewed on September 1, 2015).
Subject Electron transport.
Nanostructured materials -- Electric properties.
Nanostructures -- Electric properties.
Mesoscopic phenomena (Physics)
Electronic devices & materials.
TECHNOLOGY & ENGINEERING / Electronics / Semiconductors.
Contents Preface -- Author biography -- 1. The world of nanoelectronics -- 1.1. Moore's law -- 1.2. Nanostructures -- 1.3. On the concept of localization -- 1.4. Some electronic time and length scales -- 1.5. Heterostructures for mesoscopic devices -- 1.6. Nanofabrication.
2. Wires and channels -- 2.1. The quantum point contact -- 2.2. The density of states -- 2.3. The Landauer formula -- 2.4. Temperature, scattering, and anomalies -- 2.5. Beyond the simple theory for the QPC -- 2.6. Landauer's contact resistance and scaled CMOS -- 2.7. Simulating the channel: the scattering matrix -- 2.8. Simulating the channel: the recursive Green's function -- Appendix A. Coupled quantum and Poisson problems -- Appendix B. The harmonic oscillator -- Appendix C. Discretizing the Schrödinger equation.
3. The Aharonov-Bohm effect -- 3.1. Simple gauge theory of the AB effect -- 3.2. Temperature dependence of the AB effect -- 3.3. The AB effect in other structures -- 3.4. Gated AB rings -- 3.5. The electrostatic AB effect -- 3.6. The AAS effect -- 3.7. Weak localization -- Appendix D. The gauge in field theory.
4. Carbon and other new materials -- 4.1. Graphene -- 4.2. Carbon nanotubes -- 4.3. Topological insulators -- 4.4. The chalcogenides -- Appendix E. Klein tunneling.
5. Localization and fluctuations -- 5.1. Localization of electronic states -- 5.2. Conductivity -- 5.3. Conductance fluctuations -- 5.4. Phase-breaking time.
6. The quantum Hall effect -- 6.1. The Shubnikov-de Haas effect -- 6.2. The quantum Hall effect -- 6.3. The Büttiker-Landauer approach -- 6.4. The fractional quantum Hall effect.
7. Spin -- 7.1. The spin Hall effect -- 7.2. Spin injection -- 7.3. Spin currents in nanowires -- 7.4. Spin relaxation -- Appendix F. Spin angular momentum -- Appendix G. The Bloch sphere.
8. Tunnel devices -- 8.1. Coulomb blockade -- 8.2. Single-electron structures -- 8.3. Quantum dots and qubits -- 8.4. Resonant tunneling diodes -- Appendix H. Simple tunneling -- Appendix I. The Darwin-Fock spectrum.
9. Open quantum dots -- 9.1. Conductance fluctuations in open dots -- 9.2. Pointer states -- 9.3. Hybrid states -- 9.4. Imaging the pointer state scar.
10. Hot carriers in mesoscopic devices -- 10.1. Energy-loss rates -- 10.2. The energy-relaxation time.
Summary Modern electronics is being transformed as device size decreases to a size where the dimensions are significantly smaller than the constituent electron's mean free path. In such systems the electron motion is strongly confined resulting in dramatic changes of behaviour compared to the bulk. This book introduces the physics and applications of transport in such mesoscopic and nanoscale electronic systems and devices. The behaviour of these novel devices is influenced by numerous effects not seen in bulk semiconductors, such as the Aharonov-Bohm Effect, disorder and localization, energy quantization, electron wave interference, spin splitting, tunnelling and the quantum hall effect to name a few. Including coverage of recent developments, and with a chapter on carbon-based nanoelectronics, this book will provide a good course text for advanced students or as a handy reference for researchers or those entering this interdisciplinary area.
Other Author Institute of Physics (Great Britain), publisher.
Other Title Print version: 9780750311021.