Limit search to items available for checkout
E-BOOK
Title Fahrerlose Transportsysteme. English
Automated guided vehicle systems : a primer with practical applications / Günter Ullrich.
Imprint Berlin : Springer, 2015.
©2015

Copies/Volumes

LOCATION CALL # STATUS
 Internet  Electronic Book    AVAILABLE
Edition Second revised and expanded edition with 154 illustrations and numerous tables.
Description 1 online resource (xi, 227 pages) : illustrations (some color)
Note "Translated by Paul A. Kachur, Oberheimbach, Germany."
Available only to authorized UTEP users.
Online resource; title from PDF title page (SpringerLink, viewed January 9, 2015).
Subject Automated guided vehicle systems.
ketenmanagement
supply chain management
logistiek
logistics
economie
economics
engineering
automatisering
automation
Engineering (General)
Techniek (algemeen)
Genre Electronic books.
Contents Machine generated contents note: 1. History of Automated Guided Vehicle Systems -- 1.1. First Era of AGVS -- Idea and Implementation -- 1.1.1. First European Companies -- 1.1.2. Early Equipment and Tasks -- 1.2. Second Era -- Euphoria about Automation -- 1.2.1. Technological Advances -- 1.2.2. Large-Scale Projects in the Automotive Industry -- 1.2.3. Big Bang -- 1.3. Third Era -- Proven Technology for Intralogistics -- 2. Modern Areas of Application -- 2.1. Task-Based Aspects of AGVS in Use -- 2.1.1. AGVS in Production and Services -- 2.1.2. AGVS as a Means of Organization -- 2.1.3. Taxi Operations -- 2.1.4. Flow Line Organisation and the Focus on Series Production -- 2.1.4.1. Tasks in Series Production -- 2.1.4.2. AGVS or Fixed Assembly Line? -- 2.1.4.3. AGVS or Forklift for Commissioning and Transport? -- 2.1.4.4. AGVS or Simply Only Handcarts in Commissioning? -- 2.1.4.5. AGVS or Forklift for Purely Transport-Related Tasks? -- 2.1.4.6. Summary of Series Production -- 2.1.5. Warehousing and Commissioning -- 2.1.5.1. Floor-Level Block Storage Warehouses -- 2.1.5.2. Multi-story Block Storage -- 2.1.6. Outdoor Applications -- 2.1.6.1. Outdoor Personnel Protection -- 2.1.6.2. Outdoor Navigation -- 2.1.7. Arguments for Using AGVS -- 2.2. Industry-Related Aspects and Examples -- 2.2.1. Automotive and Auto Components Industry -- 2.2.1.1. AGVS in Transparent Manufacturing in Dresden (Volkswagen) -- 2.2.1.2. Production of the BMW 300 Series in the New Leipzig Plant -- 2.2.1.3. Logistics Tasks at Deutz AG in Cologne-Porz -- 2.2.1.4. Front-End Assembly at BMW AG in Dingolfing -- 2.2.1.5. Assembly Line for Cockpits at VW in Wolfsburg -- 2.2.1.6. Use of AGVS in Automotive Seat Manufacturing -- 2.2.1.7. Use of AGVS as a Mobile Final Assembly Platform -- 2.2.1.8. Improving Production Efficiency at Denso in the Czech Republic -- 2.2.2. Paper Manufacturing and Processing -- 2.2.2.1. Transport and Handling of Paper Rolls at Einsa Print International -- 2.2.2.2. Newspaper Printing in the Druckzentrum in Braunschweig -- 2.2.3. Electronics Industry -- 2.2.3.1. Just-in-Time Container Transport at Wohner -- 2.2.4. Food and Beverage Industry -- 2.2.4.1. Intralogistics Initiatives in the Beverage Industry -- 2.2.4.2. Innovative Commissioning at Marktkauf Logistik GmbH -- 2.2.4.3. AGVS Monitors Cheese Aging Process at Campina -- 2.2.4.4. Stainless Steel AGVs at the Schonegger Cheese Makers, Steingaden -- 2.2.5. Construction Materials -- 2.2.6. Steel-Making Industry -- 2.2.7. Clinic Logistics -- 2.2.7.1. AGVS in the State Hospital in Klagenfurt, Austria -- 2.2.7.2. Advanced Clinic Logistics with AGVS in Vorarlberg -- 2.2.7.3. AGVS in the "Nye Akershus Universitetssykehus", University of Oslo, Norway -- 2.2.7.4. AGVS in St. Olav's Hospital, Trondheim, Norway -- 2.2.8. Pharmaceutical Industry -- 2.2.9. Aviation Industry and Its Subcontractors -- 2.2.10. Plant Engineering -- 2.2.11. Retail and Transportation Logistics -- 2.2.11.1. Automated Guided Narrow Fork Lifters in an HBS Warehouse -- 3. Technological Standards -- 3.1. Navigation and Safety as Central System Functions -- 3.1.1. Navigation -- 3.1.1.1. Physical Guideline -- 3.1.1.2. Anchoring Points in the Floor -- 3.1.1.3. Laser Navigation -- 3.1.1.4. Global Positioning System (GPS) -- 3.1.1.5. Procedures in Comparison -- 3.1.2. Safety -- 3.1.2.1. Legislation -- 3.1.2.2. Manufacturers'/Suppliers' Obligations -- 3.1.2.3. Operator's Obligations -- 3.1.2.4. Components and Equipment -- 3.1.2.5. Mixed Operations with Outside Personnel -- 3.2. AGVS Guidance Control -- 3.2.1. AGVS System Architecture -- 3.2.2. Users and Clients -- 3.2.3. Functional Building Blocks of an AGVS Guidance Control System -- 3.2.3.1. User Interface -- 3.2.3.2. Transport Order Processing -- 3.2.3.3. Service Functions -- 3.3. Automated Guided Vehicle (AGV) -- 3.3.1. AGV Categories -- 3.3.1.1. Forklift AGV -- Specially Designed -- 3.3.1.2. Forklift AGV as Automated Serial Equipment -- 3.3.1.3. Piggyback AGV -- 3.3.1.4. Towing Vehicle -- 3.3.1.5. Underride AGV -- 3.3.1.6. Assembly Line AGV -- 3.3.1.7. Heavy Load AGV -- 3.3.1.8. Mini-AGV -- 3.3.1.9. PeopleMover -- 3.3.1.10. Diesel AGV -- 3.3.1.11. Special Design AGVs -- 3.3.2. Vehicle Guidance Control -- 3.3.2.1. Requirements for a Vehicle Guidance Control System -- 3.3.2.2. Vehicle Guidance Control Interfaces -- 3.3.2.3. Classical Function Blocks -- 3.3.2.4. Types of Operation -- 3.3.3. Mechanical Moving Components -- 3.3.3.1. Wheels -- 3.3.3.2. Wheel Configuration -- 3.3.3.3. Steering -- 3.3.3.4. Drives -- 3.3.4. AGV Energy Supply -- 3.3.4.1. Traction Batteries (EVBs -- Electric Vehicle Batteries) -- 3.3.4.2. Non-contacting Energy Transfer -- 3.3.4.3. Hybrid System -- 3.4. AGVS Environment -- 3.4.1. Working Environment -- 3.4.2. System-Specific Interfaces -- 3.4.3. Peripheral Interfaces -- 3.4.3.1. Doors and Gates -- 3.4.3.2. Elevators -- 3.4.3.3. Other Automatic Conveyor Systems -- 3.4.4. People and AGVs -- 3.4.4.1. Restricted Areas -- 3.4.4.2. Employees -- 3.4.4.3. Public Traffic -- 4. Fourth Era -- 4.1. Functional Challenges -- 4.1.1. DriveSafe: Integration of Navigation and Safety -- 4.1.2. Automated Togetherness: Acting Intelligently -- 4.1.3. Energy Mix: Modern Energy Management -- 4.1.3.1. Innovative Batteries -- 4.1.3.2. Capacitors -- 4.1.3.3. Fuel Cells -- 4.1.3.4. Energy Mix -- 4.2. Market Development -- 4.2.1. Traditional AGVS Markets -- 4.2.2. New Markets -- 4.2.3. Example of Uses from the New Era -- 4.2.4. Key Supplier Competencies -- 5. Interdisciplinary Design of Automated Guided Vehicle Systems (AGVS) -- 5.1. Significance of Planning in AGVS Projects -- 5.1.1. Resource-Determining Criteria -- 5.1.2. Organization of the Project Team -- 5.2. Planning Stages -- 5.2.1. Designing the System -- 5.2.1.1. Current-State Analysis -- 5.2.1.2. Needs Analysis and Conceptualization -- 5.2.1.3. Marginal Data -- 5.2.1.4. Choice of System -- 5.2.2. Planning Out the System -- 5.2.2.1. Simulation -- 5.2.2.2. Technical and Organizational Delimitation of the AGVS -- 5.2.2.3. Technical Detailed Planning -- 5.2.2.4. Product Concept Catalog -- 5.2.2.5. Final Economic Viability Assessment -- 5.2.3. Procurement -- 5.2.3.1. Analysis of the Supplier Market -- 5.2.3.2. Invitation to Bid -- 5.2.3.3. Bid Assessment and Awarding Contract -- 5.2.3.4. Functional Specifications -- 5.2.3.5. Realization -- 5.2.3.6. Operation Planning -- 5.2.4. Change Planning -- 5.2.5. Decommissioning.
Summary This primer is directed at experts and practitioners in intralogistics who are concerned with optimizing material flows. The presentation is comprehensive covering both, practical and theoretical aspects with a moderate degree of specialization, using clear and concise language. Areas of operation as well as technical standards of all relevant components and functions are described. Recent developments in technology and in the markets are taken into account. The goal of this book is to further stronger use of automated guided transport systems and the enhancement of their future performance.
Other Author Kachur, Paul A., translator.